
Accepted Manuscript

Title: Visualization of VHDL-based Simulations as a
Pedagogical Tool for Supporting Computer Science Education

Authors: Godofredo R. Garay, Andrei Tchernykh, Alexander
Yu. Drozdov, Sergey N. Garichev, Sergio Nesmachnow,
Moisés Torres-Martinez

PII: S1877-7503(17)30385-X
DOI: http://dx.doi.org/doi:10.1016/j.jocs.2017.04.004
Reference: JOCS 652

To appear in:

Received date: 29-7-2016
Revised date: 17-3-2017
Accepted date: 4-4-2017

Please cite this article as: Godofredo R.Garay, Andrei Tchernykh, Alexander
Yu.Drozdov, Sergey N.Garichev, Sergio Nesmachnow, Moisés Torres-
Martinez, Visualization of VHDL-based Simulations as a Pedagogical Tool
for Supporting Computer Science Education, Journal of Computational
Sciencehttp://dx.doi.org/10.1016/j.jocs.2017.04.004

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.jocs.2017.04.004
http://dx.doi.org/10.1016/j.jocs.2017.04.004

Visualization of VHDL-based Simulations as a

Pedagogical Tool for Supporting Computer Science

Education

Godofredo R. Garay1, Andrei Tchernykh2*, Alexander Yu. Drozdov3,

Sergey N. Garichev3, Sergio Nesmachnow4, Moisés Torres-Martinez5
1 University of Camaguey, Camaguey, Cuba. godofredo.garay@reduc.edu.cu

2 Computer Science Department, CICESE Research Center, Ensenada, Mexico

chernykh@cicese.mx
3 Moscow Institute of Physics and Technology, Moscow/ Dolgoprudny, Russia,

alexander.y.drozdov@gmail.com, sng355@gmail.com
4 Universidad de la República, Montevideo, Uruguay, sergion@fing.edu.uy

5 University of Guadalajara, Guadalajara, Mexico,mtorres1028@gmail.com

* Corresponding author

Highlights

 We address concepts of simulation visualization as a pedagogical tool for

supporting undergraduate computer science students

 We demonstrate the practicability and benefits of the proposed approach on

example of a VHDL model of the network-to-memory data path in a network node.

 We discuss three VHDL-based visualization techniques to graphically illustrate

various concepts of computer science: Block diagram, Signal waveform, and

Performance-oriented signal visualizations.

 We described how an effectiveness study of simulation visualization could map a

particular topic of computer architecture cognitive domain to Bloom’s taxonomy.

Abstract

Communication between information processing systems becomes a challenge, especially in

the “big data” era. It is a mandatory subject in the topic “Architecture and organization” of the

computer science curriculum. However, in our experience, it is a rather complex topic for

students. Simulation visualization can be used to graphically illustrate various concepts of

computer science. In this paper, we present the application of NICSim-vhd, which is an

acronym for VHDL-based Network Interface Card simulation model, as a pedagogical tool for

supporting undergraduate computer science students’ education. NICSim-vhd allows

simulating the network-to-memory data path at a network node and generating Value Change

Dump (VCD) files for simulation visualization of hardware description languages-based

models. We provide a taxonomy of learner engagement with simulation visualization.

Grounded in Bloom’s well recognized taxonomy of understanding, we suggest how to assess

the learning outcomes to which such engagement may lead.

Keywords: Active learning, computer science education, visualization, Bloom’s taxonomy, VHDL

1 Introduction

The joint ACM and IEEE curriculum guidelines for undergraduate computer science degree

programs emphasize the relevance of the knowledge area “Architecture and Organization

(AR)” [1]. According to these instructional guidelines and curriculum suggestions, students

should acquire an understanding and appreciation of computer system functional components,

their characteristics, performance, interactions, and, in particular, the challenge of harnessing

parallelism to sustain performance improvements.

One of the knowledge units included in AR is “Interfacing and Communication”. The focus

here is on the hardware mechanisms for supporting input/output (I/O) device interfacing.

Topics like I/O fundamentals (e.g., handshaking, buffering), buses (bus protocols, arbitration,

direct-memory access), and introduction to networks (communications networks as another

layer of remote access, among others that should be considered by instructors) are included.

Indeed, teaching computer architecture requires a lot of effort by the instructor. Simulators

can improve the teaching process, increase student willingness and ease ability to learn the

material [2], [3]. Commonly, computer simulation is used as a supporting tool in the process

of understanding the concepts of both computer architecture and computer organization, e.g.,

CPU [4], [5], assembly language [6], cache memory system [7], on-chip hardware components

[5], and so on.

Understanding how computers work is hardly possible without having specialized

computer laboratories or tools suitable for courses. These laboratories are too expensive to be

available in all universities, especially, in poor countries [8], [9]. Also, it is necessary to

periodically invest money to upgrade them.

An important question arises: are these labs flexible enough to be appropriate for assessing

the workloads in various testing environments? Using computer architecture simulators in lab

activities adds a new dimension to textbook theory by strengthening practical teaching.

Computer simulators are programs that contain a representation of authentic systems or

hypothetical situations. They have a number of features that are of particular help in the

teaching of science [10]. By changing parameter settings of system-under-test (SUT) a

simulation model, professors and students can test “what if” cases, and gain insight on

"unusual" workload patterns.

Regarding the I/O subsystem topic, Larraza-Mendiluze et al. [11] highlight the need for

more educational research in order to make it less abstract and more attractive. To this end,

developing and using different resources and educational methodologies based on a theory of

learning should be considered [12], [13].

A traditional course model, in which the lecturer follows a text book, exhibits slides, and

presents some theoretical exercises, is not enough to assure a through comprehension of what

is being taught. The problem is due to both the teaching model and the lack of appropriate tools

capable of translating the theory being presented into a more practical reality. Without a

practical vision, the student tends to lose touch and just “float” around the introduced concepts

and mechanisms without gaining insight into of what is really going on [14].

The study of computer hardware usually involves a lot of abstract concepts, complex

hardware structural interconnections and dynamic hardware behavior. Commonly, it is hard

for students to imagine how digital signals propagate inside computers to operate in different

functional units.

Visualization of the activities, which occur inside a computer, might be an important aspect

for improving computer science education [15], [16]. Computer-based visualizations like

animations and simulations are effective teaching-learning resources across computer science

domains.

In [17], the authors argue that such a technology, no matter how well it is designed, is of

little educational value unless it engages learners in an active learning activity.

In this paper, we present the application of the NICSim-vhd tool [18], [19] as an

experimental learning environment to teach computer architecture. The tool leads students

through a more active participation in the learning process. We strongly believe that

visualization is better than a thousand words when it comes to constructing a mental model of

a machine operation. A major idea behind our approach is to take advantage of VHDL

simulation visualization for skills training.

The rest of the paper is organized as follows. In Section 2, we discuss related work. In

Section 3, we explain the pedagogical foundations of our work. In Section 4, we present the

learning platform. In Section 5, we show how the learning platform can be used in classes for

simulation visualization. In Section 6, we present simulation visualization in the context of

Bloom’s Taxonomy. In Section 7, we present our conclusions.

2 Related Work

Visualization plays an important role in understanding and designing computers, and is

used in many areas of computer science (CS), e.g., algorithm animation, software engineering,

etc.

The history of visualization in CS education focusing on artifacts that have a documented

positive educational assessment is surveyed in [20]. The authors discuss how changes in

computing technology have affected the development and incorporation of such visualization

artifacts in CS education, and how recent technology changes are leading to progress in

developing on-line textbooks.

However, despite the fact that visualization tools are one of the most studied research fields

in CS education, most teachers and students neglect utilizing existing visualization tools for

teaching and learning, according to [21]. Possible reasons for this problem, as well as

directions for future research based on Activity Theory, and a theoretical framework borrowed

from developmental psychology are discussed by the authors. Aspects of Activity Theory that

are most relevant to the development of program visualization tools, and pursuing the

implications of this theory for deepening our understanding of how these tools impact teaching

and learning are also considered.

In [22], the effectiveness of providing visualization as part of the feedback in a problem

solving software tutor on arithmetic expression evaluation is discussed. Data are collected over

six semesters from multiple institutions. ANOVA analysis of the collected data is conducted

in three stages. The authors conclude that visualization helped students learn significantly more

concepts.

In [23], the M2S-Visual interactive cycle-by-cycle trace-driven visualization tool is

presented. It was designed as an educational resource to familiarize students with parallel code

execution on both CPUs and GPUs.

In [24], a web-based education platform for the visualization and animation of the digital

logic design process is presented. It includes the design of combinatorial circuits using logic

gates, multiplexers, decoders and look-up-tables, as well as the design of finite state machines.

Because programming is one of the most complex subjects in computer science, in [25],

program visualization is adopted to make programming concepts more accessible to students.

Two instructional scenarios are discussed. One of them is based on viewing animations, the

other on the traditional instructions without systematic use of animations. The authors

conclude that animations improve learning from several educational aspects: short-term and

long-term knowledge acquisition, and drop-out rates.

In order to help students to enhance the learning of object-oriented programming concepts,

in [26], a visualization tool is used. Visualization is found to be a promising approach in

facilitating student concept images of basic object-oriented notions.

In [27], an educational MIPS simulator, DrMIPS, is described. The tool simulates the

execution of an assembly program on the CPU, and displays the data-path graphically.

Registers, data memory and assembled code are also displayed.

3 Pedagogical foundations

 Constructivism in Computer Science education

In the 20s and 30s of the last century the founding works of Vygotsky studied how children

construct an understanding of the world around them. Social constructivism and cognitive

constructivism become two predominant educational theories. They developed by Lev

Vygotsky and Jean Piaget and form the basis of many of today's educational technology tools

in the classroom. The theories state the central role of social factors in child development,

internalization not as the process of copying material from the environment, but as a

transformative process, as well as, the individual as what develops. The differences pertain to

the nature of the stimulus, nature and origin of psychological instruments, nature of self-

regulation and novelty in development, direction of development, the concept of social

development, and finally the role of language in development [28]. An effective classroom,

where instructor and students are communicating optimally, is dependent on using

constructivist strategies, tools and practices. Teaching techniques derived from the theory of

constructivism are thought to be more successful than traditional techniques, because they

explicitly address the necessary process of knowledge construction.

In [12], the authors discussed to what extent constructivism is applicable to CS education.

According to constructivism, students construct knowledge by combining the experiential

world with existing cognitive structures. The author claims that the application of

constructivism to CS education must take into account characteristics that do not appear in the

natural sciences.

For example, a (beginning) CS student has no effective model of a computer. By effective

model the authors mean a cognitive structure that the student can use to make viable

constructions of knowledge, based upon sensory experiences such as reading, listening,

lectures, and working with a computer. They do not think that beginning CS students come to

class with the effective model of a computer. The lack of such a model is a serious learning

obstacle to CS. Thus, if the student does not bring a preconceived model to class, then we must

ensure that a viable hierarchy of models is constructed and refined as learning progresses. This

means that the computer model (e.g., CPU, memory, I/O peripherals) must be explicitly taught

and discussed, not left to haphazard construction and not glossed over with facile analogies.

The classic pedagogical model at all levels of education is based upon the instructive model,

where instructional sequences tackle the task of transferring the maximum amount of

information from an active teacher to a passive learner. In general, the instructive model tends

to be standardized and homogenized in the sense that the teaching is mostly directed to the

class as a whole, and not to individuals within the class.

One way to overcome the limitations imposed by the instructive model is to include

concepts from constructivism theory – the teacher/instructor plays not only the classical role

of transmitting knowledge the best it can, but also serving as a “facilitator” of the learning

process. In the constructivist model, the student is the central focus of the whole process of

knowledge construction. The development of students’ investigational/critical predicates and

his ability to work cooperatively in group/teams are equally relevant tasks for the teacher.

 A constructivism framework

Our pedagogical framework is inspired by the work of Maia et al. [14] and Moreno et al.

[29]. Many computer architecture courses are based upon teacher presentation and explanation

of concepts, rather than allowing the students to construct its own knowledge. This model may

turn lectures into an extremely abstract and boring process. The constructivist theory provides

an option for developing pedagogic proposals, possibly leading to better learning outcomes

than those obtained with instructive models.

In this paper, we propose a constructivism framework to support learning in the knowledge

area “Architecture and organization” of computer science curriculum [1]. Specifically, we

concentrate on the knowledge unit “Interface and Communication”. The main guidelines

followed in developing this model are listed below:

 Teaching should be conducted in an individualized manner; the teacher should pay

close attention to each student’s absorption capability.

 The student-teacher interaction should have a strong emphasis on searching for

practical and interesting questions.

 Work groups should be proposed as a forum to achieve cooperative learning.

 Knowledge can be constructed through different activities including discussion,

mediation, and experimentation (Active Learning).

 The teacher should use VHDL-based simulation in conjunction with theoretical

lectures, so that complex concepts underlying the subject may be better illustrated.

 The students should use VHDL-based simulation in the classroom and in homework

as a form of understanding situations which are difficult to generate in a real

environment.

The facility to develop and test hypotheses to create alternative solution proposals and

discuss them with the other students and the teacher makes the simulator an essential tool in

the learning process. The simulator emphasizes knowledge construction, as it makes multiple

displays of reality possible, allowing students to test their own hypotheses, and learn from their

successes and mistakes. Once faced with a specific problem, students can find real support in

the simulator that helps them to actively search for a solution, improving their ability to

identify, describe, and solve problems.

 Learner understanding and Bloom’s taxonomy

In order to study the effectiveness of various strategies for engaging learners in

visualization, we have first to point out what we expect from learners studying a particular

topic.

Rather than attempting to provide an all-encompassing breakdown for all of computer

science, we use a general taxonomy developed by Bloom in 1956 [30]. It becomes incumbent

upon any particular study of visualization effectiveness to define understanding within the

particular area of CS in which that study is being conducted.

Bloom’s taxonomy structures learner understanding along six increasingly sophisticated

levels:

 Level 1: The knowledge level. This is characterized by mere factual recall with no real

understanding of the deeper meaning behind presented facts.

 Level 2: The comprehension level. At this level, the learner is able to discern the

meaning behind the facts.

 Level 3: The application level. The learner can now apply the learned material in

specifically described new situations.

 Level 4: The analysis level. The learner can identify the components of a complex

problem and break it down into smaller parts.

 Level 5: The synthesis level. The learner is able to generalize and draw new

conclusions from the facts learned at prior levels.

 Level 6: The evaluation level. The learner is able to compare and discriminate among

different ideas and methods. By assessing the value of these ideas and methods, the

learner is able to make choices based on reasoned arguments.

4 Learning platform

There are a number of development environments available for designing circuits using a

Hardware Description Language (HDL). However, most of these systems are commercial

tools. Further, since they are aimed at developing commercial designs, most of the available

features are often not necessary in an introductory level course. For a basic HDL development,

students only need to edit, compile and simulate simple programs, typically contained within

a single file. In this section, we provide further details about the individual components

combined in the light-weight IDE.

Compiler and Simulator. The compiler and simulator should be light, open source and

cross-platform. GHDL [31] meets these requirements and is suited for our purpose. It allows

the user to compile and execute VHDL code directly. It has several commands, allowing the

user to analyze, elaborate and run VHDL code/test with various options. It is a command-line

tool, and can often be hard to use for a beginner.

Waveform Viewer. The VCD file is a text file with the values of signals at various time

points. For easy visualization of results, we need a program which shows this information

graphically. We use GTKWave, an open-source GTK+ based wave viewer, which runs on

Unix, Windows and MacOSX [32]. It supports several file formats including standard VCD

files. As shown in the next section, we can select the signals to be displayed, their radix and

zoom-level.

5 Use of visualization techniques in class

Visualization techniques help students understand details of system architecture at various

levels of complexity, and provide important supporting roles to instructors in the classroom.

In this section, we propose three different visualization techniques: Block diagram

visualization, Signal waveform visualization, and Performance-oriented signal visualization.

 Block diagram visualization

A block diagram representation of computer concepts enables students to approach course

material in more concrete way, and to visualize abstract behavior of computer hardware

architecture more clearly and effectively. Describing the system in block diagrams provides a

purely descriptive approach to its functionality and operation. In this approach, only a

description of the computer I/O subsystem is given to the students, who are then expected to

be able to describe the concepts. They could be asked to identify relationships between

concepts. This is an easy way to introduce the topic, which could be used with students who

are not majoring in computing.

Let us consider Network Interface Card (NIC) hardware as an example. Figure 1 shows the

block diagram to visualize the functionality of the NIC as a physical interface between the

computer and network cables. Using this diagram, instructor can explain NIC functionality in

terms of the Open Systems Interconnection (OSI) reference model.

Conventional NICs perform Layer-1 (Physical) and Layer-2 (Data-link) processing.

Typical questions at the physical layer (e.g., what electrical signals should be used to represent

1 and 0, or in how many nanoseconds a bit is transmitted?) can be addressed by instructors.

During the analysis, students should consider the characteristics of serial communication

(Ethernet link) and parallel communication (PCI bus), and how a parallel data stream is

converted to a serial data stream and vice-versa. At the data-link layer level, frame processing

at the NIC can be discussed. Additionally, the need of a buffer for matching the rate at which

the data is received from the network and the rate at which the NIC is sending the data across

the I/O bus (and vice-versa), can be studied.

Analysis of the block diagram allows students to explore the functionality of the NIC

hardware and enhance their understanding of the network I/O. Instructors can use block

diagrams to stimulate in-class discussion, engage students in active learning and initiate a

collaborative effort among students for finding answers and solutions to the functionality of

circuits.

 Signal waveform visualization

A solid knowledge of electronics is of major importance for a CS student. The means for

achieving a good level of understanding, especially of the practical aspects, are an issue that is

generally allocated in a CS program. Due to the applied nature of the subject, a pragmatic

practice-based approach can be an appropriate solution to complete the technical preparation

of students [33].

A typical computer science curriculum incorporates three topics in the hardware track:

digital design, computer organization, and computer architecture. In such a curriculum,

detailed study of the electrical aspects has to be borrowed from electrical engineering (a student

takes a course in basic electricity followed by another in transistor electronics). The majority

of the digital design textbooks in computer science either skips the electronics aspects of gates,

or discusses topics assuming previous knowledge of the electrical aspects. However, to fully

understand the electrical constraints, a digital design course (as a first course in computer

science) requires previous knowledge in electrical and electronics concepts. The concepts are

acquired through a sequence of courses in electronics. To present electrical topics under the

limited constraints of classes in computer science is a challenge to the computer science

educator. This is especially true as related to coverage in many digital design texts.

Waveforms visualization can help students to find relationship among multiple signals, and

to visualize signal patterns. Figure 2 shows the simulation waveform for the VHDL simulation

model described in Figure 1.
In Figure 2, PCI-bus signals (PCI clock, Request, Grant, Frame, Address†, Initiator ready,

and Target ready) are shown. Using their waveforms, instructor can analyze basic principles

of digital interfaces, such as two-state and tri-state logic (note that FRAME signal is tri-state).

 Performance-oriented signal visualization

A performance-oriented approach is crucial in CS education. The computer I/O subsystem

can be a bottleneck in computer systems. Its design has a major effect on computer

performance. Performance evaluation of the I/O subsystem is coupled with different

knowledge areas of CS curricula such as Architecture and Organization, Parallel and

Distributed Computing, and Networking and Communications. Students should to be able to

design and improve a system based on a quantitative and qualitative assessment of its

functionality, usability and performance. From the performance evaluation viewpoint, the

students are asked to calculate the performance of a computer system using different I/O

techniques. This kind of question is considered a higher-level question, since it requires the

application of knowledge, and often the evaluation of the results, in order to determine which

technique is the most appropriate in the given context.

Since traditional classroom teaching and exercises are not capable of obtaining the goals

mentioned above, we advocate performance-oriented signal visualization.

To analyze the dynamic behavior of interconnected computer system components and

provide a more complete view of how computer hardware works, performance-oriented signal

visualization is used. It is beneficial for students to visualize the hardware complexity in a

more comprehensible way.
In VHDL simulations, the network workload is modeled by using signals (sig_ethclk,

sig_pktarrival, sig_pktsize, and sig_pktreceived). The sig_buffer_fill_level_in_bytes signal

allows user monitoring of how the NIC buffer gets filled and drained (Figure 3).

CS student should understand that Ethernet standard specifications impose a limit on the

theoretical throughput achieved at system level. He should be able to compute maximum

packet rates for full-duplex Ethernet [34]. To this end, he needs to obtain the packet duration

times on the wire (as Ethernet uses a bit-serial transmission scheme, where the bit rate can be

10 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s, etc. and the bit time (i.e., time per bit) is the

reciprocal of the bit rate).

In Figure 3, the arrival of minimum-size (72-bytes) packets is simulated. This scenario

represents the worst case, requiring the most processing power. In general, a potential problem

that should be analyzed with students from the performance evaluation viewpoint is buffer

overflow at the NIC level.

Commonly, NIC hardware maintains an internal circular descriptor-ring structure. Notice

that although buffer descriptors (BDs) are not transmitted over the network, a descriptor is

† In our simplified bus model, a 1-bit address (AD) line is used.

stored into the onboard buffer for each received packet. A DMA transfer across the I/O bus

included sending packet payload and the corresponding 16-bytes buffer descriptor.

In order to create a performance-oriented way of thinking, students should evaluate

fundamental performance indicators of the communication between information processing

systems (e.g., bandwidth, latency, overhead, and throughput).

For example, the bandwidth of a parallel bus (e.g., PCI) can be computed taking into

account its width and frequency. However, in our case study (Figure 1), such a bandwidth

cannot be achieved due to overhead cycles occurring in the network-to-memory data path.

Performance-oriented signal visualization can be an effective alternative to illustrate these

issues (Figure 3). Both NIC-side processing latency and (random) bus access latency impose

an overhead on communication. To obtain a quantitative assessment of both overhead and

actual data transfer cycles (DMA cycles), NICsim-vhd includes counters for latency cycles

and DMA cycles whose outputs can be displayed by means of signals. For off-line analysis,

the values of these counters and buffer behavior statistics are written to disk trace files.

Note that PCI is a shared bus. When a bus master (such as the NIC) asserts REQ, a finite

amount of time expires until the first data element is actually transferred. This is referred to as

bus access latency and consists of several components (arbitration latency, acquisition latency

and initial target latency); see the enlarged detail in Figure 3.

Signal flow from a performance perspective can be fully explained by instructors, or

partially by instructors and partially by students through questions and problem-solving in the

classroom. Such a practice increases the student’s curiosity about course content, and promotes

meaningful learning experiences.

6 Simulation visualization in the context of Bloom’s Taxonomy

As an example of how an effectiveness study (pragmatic trials) could map a particular area

to Bloom’s breakdown, we develop sample tasks in the area of computer architecture. We

recognize that creating such a mapping is not a trivial task and the following classification is

a starting point for deliberation.

Table 1 shows sample tasks for Bloom's comprehension levels. All tasks and assignments

from Levels 2 to 6 should be solved by students individually or in groups with the help of

visualization produced by NICsim-vhd (Figures 2 and 3).

The tasks at Level-1 (Knowledge), Level-2 (Comprehension) and Level-3 (Application) are

of lesser complexity and can be assigned to students in the form of exercises. That is, well-

defined assignments should be provided, in which the solving process and the expected results

are known in advance and learners can check if they lead to the right solutions (Table 1).

The tasks at Level-4 (Analysis) and Level-5 (Synthesis) are of medium complexity and can

be assigned to students as problems for them to solve.

The tasks at Level-6 (Evaluation) should be considered as projects of higher complexity.

Problems are open-ended small-scale tasks, in which students might arrive at different

solutions or use different solving methods. The proposed solution must meet given

specifications and constraints. Projects are challenging ill-defined tasks in which students take

part in determining both the objectives and the resources required for a system development.

The project is aimed at fostering participants’ technical knowledge, collaborative work,

aspiration and imagination, and, in our view, more important from a teaching and learning

perspective.

7 Conclusions

In this paper, we show that simulation visualization can be used to graphically illustrate

various concepts of computer science. We present the NICSim-vhd, VHDL-based Network

Interface Card simulation model, as a pedagogical tool for supporting undergraduate computer

science students. We discuss three different visualization techniques to allow students to

engage in computer architecture topics from different perspectives.

Our approach allows students to visualize computer hardware concepts in more tangible

ways, in order to improve their learning experience. We describe how Bloom's taxonomy can

be used to differentiate levels of understanding in the areas of computer architecture. We show

that once Bloom levels have been applied to learning objectives, the teacher’s activity in

designing a lecture to cover a particular topic becomes easier, less nebulous, and more clearly

defined.

Acknowledgements. The work is partially supported by the Ministry of Education and Science

of the Russian Federation under contracts RFMEFI58214X0003 and

02.G25.31.0061/12/02/2013 (Government Regulation No 218 from 09/04/2010), CONACYT

(Consejo Nacional de Ciencia y Tecnología, México), grant no. 178415. The authors wish to

thank Mr. Adrian Bondy who assisted in the proof-reading of the manuscript.

References

[1] ACM/IEEE-CS Joint Task Force on Computing Curricula, “Computer Science Curricula 2013,”

ACM Press and IEEE Computer Society Press, Dec. 2013.

[2] N. Rutten, W. R. van Joolingen, and J. T. van der Veen, “The learning effects of computer

simulations in science education,” Comput. Educ., vol. 58, no. 1, pp. 136 – 153, 2012.

[3] P. W. C. Prasad, A. Alsadoon, A. Beg, and A. Chan, “Using simulators for teaching computer

organization and architecture,” Comput. Appl. Eng. Educ., vol. 24, no. 2, pp. 215–224, 2016.

[4] D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania, “Supporting Undergraduate

Computer Architecture Students Using a Visual MIPS64 CPU Simulator,” IEEE Trans. Educ.,

vol. 55, no. 3, pp. 406–411, Aug. 2012.

[5] R. Poss, M. Lankamp, Q. Yang, J. Fu, I. Uddin, and C. R. Jesshope, “MGSim—A simulation

environment for multi-core research and education,” in Embedded Computer Systems:

Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International Conference on, 2013,

pp. 80–87.

[6] T. Sondag, K. L. Pokorny, and H. Rajan, “Frances: A Tool for Understanding Computer

Architecture and Assembly Language,” Trans Comput Educ, vol. 12, no. 4, pp. 14:1–14:31, Nov.

2012.

[7] B. Atanasovski, S. Ristov, M. Gusev, and N. Anchev, “EDUCache simulator for teaching

computer architecture and organization,” in Global Engineering Education Conference

(EDUCON), 2013 IEEE, 2013, pp. 1015–1022.

[8] G. S. Wolffe, W. Yurcik, H. Osborne, and M. A. Holliday, “Teaching Computer

Organization/Architecture with Limited Resources Using Simulators,” SIGCSE Bull, vol. 34, no.

1, pp. 176–180, Feb. 2002.

[9] A. Clements, “ARMs for the poor: Selecting a processor for teaching computer architecture,” in

2010 IEEE Frontiers in Education Conference (FIE), 2010, pp. T3E–1–T3E–6.

[10] N. Srisawasdi and P. Panjaburee, “Exploring effectiveness of simulation-based inquiry learning

in science with integration of formative assessment,” J. Comput. Educ., vol. 2, no. 3, pp. 323–

352, 2015.

[11] E. Larraza-Mendiluze and N. Garay-Vitoria, “Approaches and Tools Used to Teach the Computer

Input/Output Subsystem: A Survey,” IEEE Trans. Educ., vol. 58, no. 1, pp. 1–6, Feb. 2015.

[12] M. Ben-Ari, “Constructivism in Computer Science Education,” SIGCSE Bull, vol. 30, no. 1, pp.

257–261, Mar. 1998.

[13] L. Moreno, C. Gonzalez, I. Castilla, E. Gonzalez, and J. Sigut, “Applying a constructivist and

collaborative methodological approach in engineering education,” Comput. Educ., vol. 49, no. 3,

pp. 891 – 915, 2007.

[14] L. P. Maia, F. B. Machado, and A. C. Pacheco Jr., “A Constructivist Framework for Operating

Systems Education: A Pedagogic Proposal Using the SOsim,” SIGCSE Bull, vol. 37, no. 3, pp.

218–222, Jun. 2005.

[15] G. Banerjee, M. Patwardhan, and M. Mavinkurve, “Teaching with Visualizations in Classroom

Setting: Mapping Instructional Strategies to Instructional Objectives,” in Technology for

Education (T4E), 2013 IEEE Fifth International Conference on, 2013, pp. 176–183.

[16] J. Pang, “Visualization and Computer Aided Design Techniques for Teaching Computer

Hardware Design Course,” in Proceedings of the International Conference on Frontiers in

Education: Computer Science and Computer Engineering (FECS), 2014, p. 1.

[17] T. L. Naps et al., “Exploring the Role of Visualization and Engagement in Computer Science

Education,” SIGCSE Bull, vol. 35, no. 2, pp. 131–152, Jun. 2002.

[18] G. R. Garay, A. Tchernykh, A. Y. Drozdov, S. V. Novikov, and V. E. Vladislavlev, “A VHDL-

Based Modeling of Network Interface Card Buffers: Design and Teaching Methodology,” in

Communications in Computer and Information Science, vol. 595, I. Gitler and J. Klapp, Eds.

Cham: Springer International Publishing, 2016, pp. 250–273.

[19] G. R. Garay, J. Ortega, A. F. Díaz, L. Corrales, and V. Alarcón-Aquino, “System performance

evaluation by combining RTC and VHDL simulation: A case study on NICs,” J. Syst. Archit.,

vol. 59, no. 10, Part D, pp. 1277–1298, Nov. 2013.

[20] E. Fouh, M. Akbar, and C. A. Shaffer, “The Role of Visualization in Computer Science

Education,” Comput. Sch., vol. 29, no. 1–2, pp. 95–117, 2012.

[21] M. Knobelsdorf, E. Isohanni, and J. Tenenberg, “The Reasons Might Be Different: Why Students

and Teachers Do Not Use Visualization Tools,” in Proceedings of the 12th Koli Calling

International Conference on Computing Education Research, New York, NY, USA, 2012, pp. 1–

10.

[22] A. N. Kumar, “The Effectiveness of Visualization for Learning Expression Evaluation,” in

Proceedings of the 46th ACM Technical Symposium on Computer Science Education, New York,

NY, USA, 2015, pp. 362–367.

[23] A. K. Ziabari, R. U. Tena, D. Schaa, and D. Kaeli, “A Framework for Visualization of OpenCL

Applications Execution: A Tutorial,” in Proceedings of the 3rd International Workshop on

OpenCL, New York, NY, USA, 2015, pp. 22:1–22:2.

[24] A. Shoufan, Z. Lu, and S. A. Huss, “A Web-Based Visualization and Animation Platform for

Digital Logic Design,” IEEE Trans. Learn. Technol., vol. 8, no. 2, pp. 225–239, Apr. 2015.

[25] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide, “Toward the effective use of educational

program animations: The roles of student’s engagement and topic complexity,” Comput. Educ.,

vol. 67, pp. 178 – 192, 2013.

[26] I. Cetin, “Visualization: a tool for enhancing students’ concept images of basic object-oriented

concepts,” Comput. Sci. Educ., vol. 23, no. 1, pp. 1–23, 2013.

[27] B. Nova, J. C. Ferreira, and A. Araújo, “Tool to support computer architecture teaching and

learning,” in Engineering Education (CISPEE), 2013 1st International Conference of the

Portuguese Society for, 2013, pp. 1–8.

[28] R. DeVries, “Vygotsky, Piaget, and Education: a reciprocal assimilation of theories and

educational practices,” New Ideas Psychol., vol. 18, no. 2–3, pp. 187 – 213, 2000.

[29] L. Moreno, C. Gonzalez, I. Castilla, E. J. Gonzalez, and J. Sigut, “Use of Constructivism and

Collaborative Teaching in an ILP Processors Course,” IEEE Trans. Educ., vol. 50, no. 2, pp. 101–

111, May 2007.

[30] B. S. Bloom, “Taxonomy of educational objectives: The classification of educational goals .,”

Handb. Cogn. Domain, p. 200, 1956.

[31] T. Gingold, “Ghdl-where vhdl meets gcc,” 2010. [Online]. Available: http://ghdl.free.fr.

[32] T. Bybell, “Gtkwave.” [Online]. Available: http://gtkwave.sourceforge.net.

[33] D. Rosner, G. Sârbu, R. Tătăroiu, and R. Deaconescu, “Applied electronics curriculum for

Computer Science students,” in EUROCON - International Conference on Computer as a Tool

(EUROCON), 2011 IEEE, 2011, pp. 1–4.

[34] S. C. Karlin and L. Peterson, “Maximum Packet Rates for Full-Duplex Ethernet,” Department of

Computer Science, Department of Computer Science, TR-645-02, 2002.

[35] G. R. Garay, A. Tchernykh, and A. Drozdov, “An Approach for the Performance Evaluation of

Multi-tier Cloud Applications,” in 2015 International Conference on Engineering and

Telecommunication (EnT), 2015, pp. 63–66.

Godofredo R. Garay received the B.E. degree in Computer Engineering from the Universidad

Tecnológica de La Habana José Antonio Echeverría (CUJAE), Havana, Cuba, in 1994, and the

Ph.D. degree in 2012, from the University of Granada, Spain. He is currently an Assistant

Professor at the University of Camaguey’s Faculty of Informatics, Cuba. His research interests

include studying performance bottlenecks in current computers, and performance modelling and

evaluation.

Andrei Tchernykh received the Ph.D. degree from Institute of Precise Mechanics and Computer

Technology of the Russian Academy of Sciences, Russia in 1986. Currently he is a Full Professor

in Computer Science Department at CICESE Research Center, Ensenada, Baja California,

Mexico, and a head of Parallel Computing Laboratory. He is a member of the National System of

Researchers of Mexico (SNI), Level II. He leads a number of national and international research

projects. He delivered 50 keynote speeches and invited lectures, served as a program committee

member and general co-chair of more than 100 professional peer-reviewed professional

conferences. His main interests include parallel computing, resource optimization techniques,

adaptive resource provisioning, multi-objective optimization, real time systems, computational

intelligence, and incomplete information processing.

Alexander Yu. Drozdov received the M.Sc. degree in mathematics in 1988 from the Moscow

State University, Russia. He is currently a Full Professor at The Moscow Institute of Physics and

Technology, Russia, and a head of the laboratory of design and modelling of special-purpose

computer systems. His research interests are in the fields of research and development of new

high-performance architectures and embedded computing systems, embedded control systems,

together with the development of tools, embedded and system software.

Sergey Garichev received the M.Sc. and Ph.D. degree from Moscow Institute of Physics and

Technology (State University) - MIPT. Currently he is a Dean of the Department (Faculty) of

Radio Engineering and Cybernetics of MIPT, senior researcher with a specialization in Systems

of design automation, head of the department “Radio engineering and control systems.” His major

research and educational interests are in the areas of telecommunications, radar and radio

communication equipment, microprocessor and computer technology, control systems design,

and application software development for special-purpose technical equipment.

Sergio Nesmachnow is a Full Time Professor at Universidad de la República, Uruguay He is

Researcher at National Research and Innovation Agency (ANII) and National Program for the

Development of Basic Sciences (PEDECIBA), Uruguay. His main research interests are scientific

computing, high performance computing, and parallel metaheuristics applied to solve complex

real-world problems. He holds a Ph.D. (2010) and a M.Sc. (2004) in Computer Science, and a

degree in Engineering (2000) from Universidad de la República, Uruguay. He has published over

90 papers in international journals and conference proceedings. Currently, he works as Director

of the Multidisciplinary Center for High Performance Computing (Universidad de la República,

Uruguay) and as Editor-in-Chief for International Journal of Metaheuristics, while he is also Guest

Editor in Cluster Computing and The Computer Journal. He also participates as speaker and

member of several technical program committees of international conferences and is a reviewer

for many journals and conferences.

Moisés Torres-Martinez received his Bachelors of Science in Information and Computer

Science from the University of California Irvine, and Ph.D. in Educational Administration from

the University of California Los Angeles and Irvine. He obtained a certificate of Management

Development Program at Harvard Institute for Higher Education. He is Adjunct Professor at the

University of Guadalajara, and a Senior Consultant in Hitum S.A. de C.V. He teaches technology

and business administration. In Hitum, he is responsible for promoting projects with academia,

government and private industry in the area of information technology. He has served in various

executive positions in higher education institutions in Mexico (UdeG, IPICYT), and the United

States (University of California System). He is founder of several organizations related to

technology, and education. He is a recipient of awards and member of international science,

engineering, technology and education societies.

Figure 1. The functionality diagram of Network Interface Card

Figure 2 Visualization of PCI-bus signal waveforms.

Figure 3. Visualization of overhead cycles and DMA cycles for receiving a packet.

Statsgen

pktarrival

req

gnt

pciclk

trdy

irdy

Signals for modelling the PCI/PCI-X bus

pktsize

MemSub

ClkGen

TraffGen

1 2 3 4 8

Signals for modeling
the input traffic

Signals used for generating the output files
(directed to Statsgen).

frame

ethclk

AD

9

IOSub

5

NIC

ethclk

nic_proc_latency_cycles_counter_out (3)

acq_latency_cycles_counter_out (4)

arb_latency_cycles_counter_out (8)

target_latency_cycles_counter_out (9)

burst_cycles_counter_out (5)

pciclk

pktreceived

state

dma_cycles_counter_out (6)

clock_counter_out

pktsize

transfer_start_req

transfer_end

dropped_packets_count (7)

buffer_fill_level_in_bytes (1)

max_buffer_fill_level (2)

(a)

(b)

6 7

Table 1: Sample Tasks for Bloom's Comprehension Levels

Level What the learner can do Sample tasks and assignments

1

- Recognize and informally define specific concepts in a

network, like input/output processing and management,

NIC, I/O bus, bus protocols, Ethernet networks, or basic

analysis concepts such as bandwidth, latency, overhead,

and throughput.

- Define the following concepts:

PCI bus bandwidth and PCI

throughput.

2

- Understand the general principles and essential

properties of NIC, Ethernet and PCI protocols and

explain how they work using words and figures.

- Understand the role of the network-to-memory data

path on system performance.

- Understand the behavior of a network node (or its

model) subjected to worst-case Ethernet traffic.

- Explain why PCI throughput

decreases as the number of bus

master devices attached to the bus

increases.

3
- Construct the best-case and worst-case analysis of NIC-

side processing, I/O bus operation, network workload.

- Demonstrate the best-case of bus

latency for achieving the highest

bus performance, and calculate bus

throughput.

4

- Be able to analyze bottleneck detection problems on the

network-to-memory data path, identify essential objects,

and split it into smaller problems.

- Explain why the bus is the

bottleneck for 9000-bytes input

packet with a DMA burst size of

256 bytes, but not with a burst size

of 4096 bytes.

5

- Design solutions to complex problems where several

different data structures, algorithms and techniques are

needed.

- Analyze the efficiency of bus transactions for a network

workload consisting of maximum-size network packets.

- Set up criteria for comparing various solutions.

- Design the Finite States Machines

needed for modeling the arbitration

process in a PCI bus.

6

- Argue how and why DMA burst size should be tuned to

avoid buffer overflow at NIC level in 10GbE networks.

- Discuss the pros and cons of parallel I/O bus

architecture (e.g., PCI and PCI-X) and serial link (PCI

Express) that solve the same or similar problems.

- Carry out an evaluation of a design or analysis.

- Compare PCI-X and PCI Express

as NIC-to-System interconnect

options.

- Discuss the design of an

experiment for measuring the I/O

bus throughput.

